Differentiation III

Patrons are reminded that $\frac{dy}{dx}$ is the gradient. Also, if a curve passes through a point, then the x and y values of the point fit into the equation of the curve.

- 1. A curve is given by $y = ax^2 + 2x 1$. When x = 1, $\frac{dy}{dx} = 12$. Find a.
- 2. A curve is given by $y = 8x^3 + ax + 1$. When x = -1, $\frac{dy}{dx} = 23$. Find a.
- 3. A curve is given by $y = ax^2 + ax + 1$. When x = 4, $\frac{dy}{dx} = 27$. Find a.
- 4. A curve is given by $y = ax^2 + bx + 4$. It passes through the point (1,5). At that point the curve has gradient 4. Find a and b.
- 5. A curve is given by $y = mx^2 + 3x + n$. It passes through the point (1, 1). At that point the curve has gradient 7. Find m and n.
- 6. A curve is given by $y = ax^2 + ax + b$. It passes through the point (1, 10). At that point the curve has gradient 9. Find a and b.
- 7. A curve is given by $y = x^3 + ax + b$. It passes through the point (2, 14). At that point the curve has gradient 15. Find a and b.
- 8. A curve is given by $y = x^3 + ax^2 + bx + 2$. It passes through the point (-1, 12). At that point the curve has gradient -13. Find a and b.
- 9. A curve is given by $y = ax^4 + bx + 1$. It passes through the point (2,23). At that point the curve has gradient 35. Find a and b.
- 10. A curve is given by $y = 2x^3 + ax$, where *a* is a constant. The value of $\frac{dy}{dx}$ when x = 2 is twice the value of $\frac{dy}{dx}$ when x = -1. Work out the value of *a*.
- 11. A curve is given by $y = x^2 + kx$, where k is a constant. The value of $\frac{dy}{dx}$ when x = 6 is three times the value of $\frac{dy}{dx}$ when x = 0. Work out the value of k.
- 12. A curve is given by $y = mx^2 + 4x + 3$, where *m* is a constant. The value of $\frac{dy}{dx}$ when x = 8 is three times the value of $\frac{dy}{dx}$ when x = 2. Work out the value of *m*.
- 13. A curve is given by $y = 4x^2 + ax$, where *a* is a constant. The value of $\frac{dy}{dx}$ when x = 4 is five times the value of $\frac{dy}{dx}$ when x = 1. Work out the value of *a*.
- 14. A curve is given by $y = 5x^3 + kx$, where k is a constant. The value of $\frac{dy}{dx}$ when x = 2 is seven times the value of $\frac{dy}{dx}$ when x = 0. Work out the value of k. k = 10
- 15. A curve is given by $y = 4\sqrt{x} + ax$, where *a* is a constant. The value of $\frac{dy}{dx}$ when $x = \frac{1}{16}$ is three times the value of $\frac{dy}{dx}$ when x = 1. Work out the value of *a*.